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ABSTRACT

We study the asymptotic behavior of the solutions of the scalar Volterra
integrodifferential equation
(E) x'(t) + (a * g(x))(t) = £(t), t 2> 0, x(0) = Xg o
where a,f : Rf + R and g:R *+ R are given functions, * denotes
convolution and x : R+ + R 1is the solution. We are in particular interested
in the largely unsolved case when a é L1(R+) and f vanishes at infinity
but does not belong to any LP(R+) space for p < @ , The report examines

both the linear (g(x) £ x) and the nonlinear (g(x) # x) version of (E) .
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SIGNIFICANCE AND EXPLANATION

In the construction of mathematical models of technical and physical

systems one frequently ends up with equations in which the current rate of

dx(t)

change (= at

) of the state of the system ( = x(t)) is a function not

only of x(t) but also of x(T) for past times T < t . Specifically, one

obtains Volterra integrodifferential equations, exemplified by

t>0.

(E) S+ [F att-srgix(s)as = £(6) , x(0) = x ,
e 0

Here f(t) is the external input, a(t) is the feedback kernel, g(x) is an

in general nonlinear function of x and x(t) is the state of the system at

time t .
The key problem concerning (E) is the behavior of x(t) for large

values of t . 1In particular one is interested in whether x(t) tends to

zero when t + ® or whether the system keeps oscillating. The present report

analyzes these questions. We are in particular interested in the case when
the feedback kernel is large, that is when a(t) is not integrable over the
positive half-axis. Examples of such kernels often occur in applications
where one encounters kernels behaving roughly as t-a , for some 0 < a < 1
for large t .

The second key aspect of this report is that we do allow large input

functions f£(t). We only assume f£(t) * 0 , as t * ® but do not take
IfIP to be integrable over the positive half-axis for any p < ® .

Our main result (Theorem 1) concerng the nonlinear version of (E). We
give conditions under which bounded solutions of (E) decay to zero as

t + °, We also give a result on the linear version of (E).

[4

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ASYMPTOTIC PROPERTIES OF VOLTERRA EQUATIONS WITH NONINTEGRABLE KERNELS
Stig-0Olof Londen
INTRODUCTION
In this report we examine the asymptotic behavior of the solutions of the

scalar Volterra equation
(1.1) x'(t) + (a * g(x))(t) = £(t) , t2>0, x(0) = x5 ,
where a,g,f are given functions, x is the solution and where * denotes
convolution. Our first result (Theorem 1 ) concerns the nonlinear case with
both a and f big; thus a # L1(R+) and f satisfying only (1.7) are not

excluded. In Theorem 2 we examine the linear version of (1.1) under the same

size conditions.

We begin by stating

Theorem 1. Assume

(1.3) aeBVR), a(® =0,
(1.4) Re a?0, WER, w#*o

with af(w) =0 if we 2 def {w|Re a(w) =0 , w #* 0},

(1.5) Z is countable.

Suppose the differential resolvent ra(t) of a(t) satifies

1, .+
(1) r e (®)
(1.6) (1i) £ &Y

(414)  trle /Y .

and let f be such that
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o 4
feL(R), lim f(t) =0 .
(1.7) £peo

Finally let

+
(1.8) X € (L°° n LAC)(R ) be a solution of (1.1) a.e. on rY .
Then
(1.9) lim g(x(t)) =0 .,

£+
N

- a © =i
Above a(w) gf f e lmta(t:)dt. By (1.3) a is well defined for

0
weR, W*O0 . The differential resolvent ra(t) is defined as the

solution of
(1.10) r;(t) + (ra * a)(t) =0, ra(O) =1.

The question naturally arises whether there exist kernels a ¢ L1(R+)
and of positive type (i.e. satisfying (1.4)) such that (1.6) holds. By a
well-known result [7] the conditions iw + ;(w) #0, weR, and
(1.11) a(t) positive, nonincreasing and convex on rt ’
imply (1.6i). But under the same conditions one does in fact have (1.6ii) and
if moreover -~a'(t) is convex then {(1.6iii) is true. The two last statements
are contained in Lemma 1 below which is proved in Section 3.

Lemma 1. Let a(t) be nonnegative, nonincreasing and convex on Rt

with a(0) < = , a(®) = 0 , and assume that for every fixed T > 0 one has

that a(t) is not linear in all the intervals [nT, (n+1)T] ; n =

0,1,*** . Then (1.4) with 2Z empty and (1.6i,ii) hold. If in

addition =~a'(t) is convex then (1.6iii) is true.

+
Apart from being applicable to equations with kernels a ¢ L1(R ) the
above theorem also extends recent work [5], [9] done for equations having
+
kernels a € L1(R ) and a nonhomogeneous term f satisfying only (1.7). To

see this we formulate Lemma 2 which follows upon an examination of the proof

dand mm‘tv-‘m—-mmm ey :




of Theorem 1, and the fact that a ¢ L‘(R+) together with (1.4) and 0 ¢ 2

implies ra,r; € L1(R+) .

Lemma 2. Let (1.2), (1.4), (1.5), (1.6iii), (1.7) and (1.8) hold. In

addition assume a € L1(R+)  and 0 ¢ Z . Then (1.9) is true,

Both [5] and (9] work with more general forms of the convolution term
than (1.1). However, in addition to the condition {(corresponding to)
ace€ L1(R+) the results of [9] do require a moment condition on the kernel to
be satisfied and the results of [5] require g to be locally Lipschitzian.
At the price of (1.6iii) all this has been removed.

The proof of Theorem 1 is essentially based on (1.4), on the size
conditions (1.6), and on an asymptotic res.lt obtained in [9]. Observe that
the countability assumption (1.5) can be dropped (without the addition of any
other hypothesis) if one applies the technique of [4] to the integrated
version of (1.1). Aas this has not been explicitly done we prefer to use [9,
Theorem 1b]j.

One of the main problems concerning the linear equation
(1.12) x'(t) + (a * x)(t) = £(¢t) , t >0, x(0)=x4,
is the formulation of hypotheses on the kernel a(t) which imply

r. € L1(R+) « The most frequently used approach to this hard problem is to

A

give conditions on a(t) which imply that ra(w) is sufficiently smooth.

But one also has (provided one at first demonstrates that in case f has

+
compact support then x € ﬁ”(R+)) that ra € L1(R } follows if the

implication (1.13) is true [8] .

B e L ——

o 4
x €L (R ) satisfies (1.12)

with f satisfying (1.7) implies {t:: x(t) =0}




;
J

We show below that under reasonable conditions on the size of the derivatives

|
! of the kernel a(t) one may weaken (1.13) to
1

® 4
x € L (R) satisfies (1.12)

|

| (1.14) with f satisfying (1.7) implies {1lim x(t) = 0} , i
tro 3

and lim x'(t) =0 |

> i‘

; + ]
‘ without altering the conclusion, namely that r, ¢ L’(R ) holds if the ;
i

implication (1.14) is true. !
A recent article by Gripenberg [2] analyzes the integral resolvent
R,(t) of a(t) by a related approach but under different hypotheses.

Theorem 2. Let a(t) ¢ C1[0,w) r with a (») = 0 satisfy

t (1.15) a' e ') 3
+ 5
(1.16) a' € BV(R) i
f (1.17) J, tlaa'(v)] <=
. R
" Z+alz) #0, ReZ>0, Z#0 !

lim inf |2 + a(2)] > 0 ,
|zl+0, zZ*0
3 : Re 22 0

and suppose (1.14) holds. Then ra € L‘(R+) .




2. PROOF OF THEOREM 1 .

Convolve (1.1) with r, and use the fact that r, satisfies (1.10).
This gives
(2.1) (r, * x')(t) - (r] *g(x))(t) = (r * £(t) .
An integration of the first term on the left side of (2.1) by parts results in
(2.2) x(t) ~ (r; * h(x))(t) = F(t)
where h(x), x € R ; F(t), t € R+ ; are defined by

(2.3) h(x) = g(x) = x , F(t) = (r, * £)(t) + ry(t)xg -

From (1.6i,ii), (1.7) and (1.10) follows

(2.4) Fe (L n LAC)(RD), lim F(t) = 0
>
(2.5) F'e L(RT) , lim F'(t) = 0 .
t”
Thus
(2.6) 1im % P (1)ar = -F(0) = -x,
tro 0

pDifferentiate (2.2), use the fact that t;(O) = (0 and define b(t) =
-r;(t) . This gives

(2.7) x'(t) + (b * h(x))(t) = F'(t) .

Then observe that c(t) dgf ftb(s)ds = -r;(t) is such that
0

(2.8) c(w) =0 , [, ettrat =1 .
R
From the fact that b € L1(R+) and from (1.10) we have
(2.9) b(w) = iwaw){iw + a(@)] ™', w#0; b(0) =0 .

Note that by (1.4) the transform condition iw + a(w) # 0 is satisfied for

w#0. A simple computation gives




(2.10) Re b(w) = sze{a(m)}Iiw + n(w)l-z w#o0

(2.11) Im b(w) = [W(Re a)z + wZIma + w(Ima)zlliw + a(w)l-2 R w#0,

and so, by (1.4), (2.9)=-(2.11),

Re b{w) » 0, weR; Reblw) =0 iff w ez v {0} ,

(2.12)

[ b(w) =0 if Re b{w) = 0 .

By (1.5), (1.6) = in particular we need (1.6iii) - (1.8), (2.4), (2.5), (2.12)

and as h € C(R) we may apply [9, Theorem 1b] to get

(2.13) lim [x(t) + h(x(t)) [ c(t)atr] =0 .
toreo R

But if the first part of (2.3) and the second part of (2.8) are used in (2.13)

one gets (1.9).




3. PROOF OF LEMMA 1

It is well-known that under the stated hypotheses (1.4) holds with 2
empty. See for example (10, p. 170], (3, p. 546]. From [7] we have that
(1.6i) holds.

To show that (1.6ii) is satisfied one may at first observe that by
(1.6i), (1.10), the monotonicity of a(t) and as a(0) < * one has

r; € Lw(ﬁ) « Thus we may Laplace transform r; for Re s > 0 and obtain

;;(s) = —;(s)[s + ;(s)]-’ « (Note that s + ;(s) # 0 for Re s ? 0). But

~ -1
by (1.3) Ja(s)| = o(ls| ') as Is| + » and so we conclude by an application

of [6, p. 368] that
. 2 + ~ _ ~ . -~ -1
(3.1) ra € L (R) , ra(w) = ~a(w)liw + a(w)] , w#*#0 .

To have r; € L1(R+) it suffices to show that r;(w) is locally absolutely
continuous on R and satisfies
(3.2) Sower'm .
But (3.2) follows after straightforward computations which make use of the
monotonicity of a and the estimates in (7, Lemma 1].

To prove (1.6iii) one notes at first that the Laplace transform of

SZ da(s) +

fe r%(t)  is the analytic function c(s) = o

c(t) 9
~ 2 ~ -2
+ [a(s)1°][s + a(s))™“, Re s >0 . We assert that

(3.3) sup / |e(x + iy)lzdy < =,
0 ¢<x<® R

To see this one observes that

s2 d;(s)

= -s;(s) - L{ta"(t) - a'(t)} ,
ds

(3.4)

~ -1 L
that |a(s)] = o(|s| ') and that by the monotonicity of a(t) one has ta",

+
a' € L1(R )+ Consequently




o T e e

sup ls2 E%§§l| < ® and so sup Ie(s)] ¢ » ,
Re s>0 Re 8>0

which together with the asymptotic estimate for ;(s) gives (3.3). Thus

c € Lz(R+) and

-~

. fa(w)1? + iw? %%
(3.5) c(w) = < R w#* 0.

[a(w) + iw]2

-

+
To have ¢ € L1(R ) we need to verify that ¢ is locally absolutely

continuous and satisfies

~

dec(w) 1
(3.6) aw €L (R) .
From [1, p. 972] we have (under the assumption that =-a' is convex) that

'y

a{w) 1is twice continuously differentiable and satisfies

2° 1/ |w]
(3.7) |2_2§91 <k [ t2atiat, w#o
Qw 0

for some constant K . Estimating this upwards gives

aa -2 ol ™! -2°
(3.8) |——2| < Kjwl a(t)dt < K1|w| a(w)
aw 0

where the second inequality follows from (7, Lemma 1]. Note that we also have

~

(3.9) r9§£911 < xlwl " a1,

It now takes some computations which use (3.5), (3.8), (3.9) and the

asymptotic estimates

d(k)

alw)

dw
to arrive at (3.6).

| l=o(lel™ , w+e, k=0,1,2,




|
|
|
’,
¥

4. PROOF OF THEOREM 2.

Let [(x) denote the positive limit set of x , i.e.

I'(x) = {y e Lm(R)l there exists t,* = such that x(t+t ) * y(t)

(4.1)

We show that
(4.2)

Take ¢

(4.3)

There exists
(4.4)

Define, for

(4.5)
thus

(4.6)

* [
weak in L (R)}.

every y & I'(x) is a constant,
> 0 and Aefine Ac by
1 lw] € ¢
Ac(w) = 0 lw) > 2¢
1+ c-1[c - |wll, ¢ < |w] € 2¢
Gc(t) such that

~

1
sc €L (R) , Gc(w) = Ac(w) .

n=1,2,*¢ , and t » 0,

f (t) = e f(t) ’
n

sl

e et .
n

Let x satisfy

n
(4.7)
then
(4.8)
and
(4.9) x

n

From (1.15),

X0(E) + (a % x )(t) = £(0) , x (0) =x ,
Xn(t) = xor (t) + (r, * £)(t), t2 0

+
+x, a n * @ , uniformly on compact sets of R .

(1.16), (1.18) follows (much as in the proof of Lemma 1) that




o Dy * .

(RS

{
s

lim r (t) = 0 .
tro 2

Define Xp = x = fn = f=0 for t <0 . By (4.6), (4.10) we may take

Fourier transforms in (4.8) and obtain

Ly a ~ 1

(4.12) x () = x.r (W) + [dw+ a(w)]” £ (W), w#O0 .

As Gc(w)[iw + a.a(m)]-1 € LZ(R) we have that there exists b; such that

. 8 (w)
(4.13) b, € 2(r) , b(w) = —S=— .
iw + a(w)

Suppose for the moment that there exists b,(t) satisfying

(4.14) b, & m) , by(w) = [1 = §_(w)] [4w + a1~ .

Then

-] (-]
(4.15)  x (t) = x,r (t) + / b,(t-8)f (s)ds + / b,(t-s)f (s)ds .

0 0 0

As b1 + b? =r=0 for t <0 we have b1(t) = -bz(t), t <0 . But

(4.16) | ["b,(t-8)£_(s)ds| < b, 10, Vitn,
t L'(R) L (R)
and so
(4.17) sup | ["b (t-s)f (s)ds| =X <= .
n
t,n t
Also
00 -
(4.18) lim [ b,(t-8)f (s)ds = / b (t-s)f(s)ds ,
n+® 0 0

uniformly for t € R . Define gn(t), g(t), t e R, by

=10~




S

-

NS

-4
(4.19) g (t) = f b (t-s)f (s)ds, g(t) = x(t) - x.r (t) - f“ b (t-s)f(s)ds.
n 0 1 n 0 a 0 2
Then
(4.20) g € (v, get’m ,
and so g,,9 respresent tempered distributions.
We claim that
L]
(4.21) lim (g_ - g) =0 weak in 8' .
e O
From (4.9), (4.15), (4.18), (4.19)
(4.22) lim (gn(t) - g(t)) =0 uniformly on compact sets of R ,

ne»eo

and as, by (4.17)

(4.23)
1
lg (v)) = | S5 j°°{b1(t-s)fn(s)ds} < t/2|b’| £l +K,t20,
0 t L“(R) L (R)
'gn(t)|<xl t <o,

we conclude that (4.21) holds. But then
-~ ~ *
(4.24) lim (g_ - 9) =0 weak in s' .
ne n

By (4.3), (4.4), (4.13), (4.19)
(4.25) supp ;n c [=-2c¢c,2c).
From (4.24), (4.25) follows
(4.26) supp ; c [=2¢c, 2c) .
For g € Lw(R) we denote the spectrum of g (equivalently the support

of the distribution Fourier transform) by o(g). The spectrum of a set A is

defined as o(A) = U olp) . For any Yy € LQ(R) we have o(l'(y)) c aly)
¢ EA
and therefore, by (4.26),

-11=~




(4.27) o(T'(g)) < o(g) c [-2¢c, 2c).

But from (4.11) and the second part of (4.19) follows, as b2 € L‘(R) and
£f+0 when t + o ,
I'(g) = I(x)

and so o(l'(g)) = o(I'(x)) . Hence o(I'(x)) < [-2¢, 2¢c] « But c was
arbitrary and therefore we conclude that o{(l'(x)) = 0 which implies (4.2).

We return to the proof of (4.14). By (1.15), (1.18), (4.3), (4.4) we
have that [1 - Sc(w)][iw + ;(m)]-1 is locally the transform of an L1-
function. Thus we only need to check the behavior of ;2 at infinity. But

~

if one rewrites a as

~

a(w) = a(0)[iw] "' - a'(0)w 2 - (da')u 2 , w# 0

and uses (1.17) it follows after some calculations that

~

d -
L (i + a(w)] Yy e LV (==, -2¢] U [2¢, @)
and so (4.14) is true. The assertion (4.2) is hence valid.
From {8, Theorem 3.1] follows that the proof of Theorem 2 is complete

provided we show that if f has compact support then

® 4
xora(t) + (ra * £)(t) e L (R) .

This however is a consequence of (4.11).
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